Adjunctive Use of Platelet Glycoprotein IIb/IIIa Inhibitors for Carotid Angioplasty and Stent Placement:Time to Say Good Bye?

2003 ◽  
Vol 10 (1) ◽  
pp. 42-44 ◽  
Author(s):  
Adnan I. Qureshi
2000 ◽  
Vol 10 (4) ◽  
pp. 326-326
Author(s):  
A. Pain ◽  
O. Kai ◽  
B. Urban ◽  
C. Casals-Pascual ◽  
K. Marsh ◽  
...  

1998 ◽  
Vol 80 (08) ◽  
pp. 310-315 ◽  
Author(s):  
Marie-Christine Bouton ◽  
Christophe Thurieau ◽  
Marie-Claude Guillin ◽  
Martine Jandrot-Perrus

SummaryThe interaction between GPIb and thrombin promotes platelet activation elicited via the hydrolysis of the thrombin receptor and involves structures located on the segment 238-290 within the N-terminal domain of GPIbα and the positively charged exosite 1 on thrombin. We have investigated the ability of peptides derived from the 269-287 sequence of GPIbα to interact with thrombin. Three peptides were synthesized, including Ibα 269-287 and two scrambled peptides R1 and R2 which are comparable to Ibα 269-287 with regards to their content and distribution of anionic residues. However, R2 differs from both Ibα 269-287 and R1 by the shifting of one proline from a central position to the N-terminus. By chemical cross-linking, we observed the formation of a complex between 125I-Ibα 269-287 and α-thrombin that was inhibited by hirudin, the C-terminal peptide of hirudin, sodium pyrophosphate but not by heparin. The complex did not form when γ-thrombin was substituted for α-thrombin. Ibα 269-287 produced only slight changes in thrombin amidolytic activity and inhibited thrombin binding to fibrin. R1 and R2 also formed complexes with α-thrombin, modified slightly its catalytic activity and inhibited its binding to fibrin. Peptides Ibα 269-287 and R1 inhibited platelet aggregation and secretion induced by low thrombin concentrations whereas R2 was without effect. Our results indicate that Ibα 269-287 interacts with thrombin exosite 1 via mainly electrostatic interactions, which explains why the scrambled peptides also interact with exosite 1. Nevertheless, the lack of effect of R2 on thrombin-induced platelet activation suggests that proline 280 is important for thrombin interaction with GPIb.


1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


1998 ◽  
Vol 80 (09) ◽  
pp. 437-442 ◽  
Author(s):  
I. Hioki ◽  
K. Onoda ◽  
T. Shimono ◽  
H. Shimpo ◽  
K. Tanaka ◽  
...  

SummaryAlterations in platelet aggregability may play a role in the pathogenesis of qualitative platelet defects associated with cardiopulmonary bypass (CPB). We circulated fresh heparinized whole blood through tubing sets coated with heparin (C group, n = 10) and through non-coated sets (N group, n = 10) as a simulated CPB circuit. Shear stress (108 dyne/cm2)-induced platelet aggregation (hSIPA), plasma von Willebrand factor (vWF) activity and platelet glycoprotein (GP) Ib expression were measured, before, during, and after this in vitro set up of circulation. In the two groups, the extent of hSIPA significantly decreased during circulation and was partially restored after circulation. Decreases in the extent of hSIPA were significantly less with use of heparin-coated circuits. There was an equivalent reduction in plasma vWF activity, in the two groups. Expression of platelet surface GP Ib decreased significantly during circulation and recovered after circulation. Reduction of surface GP Ib expression during circulation was significantly less in the C group than that in the N group. Decrease in surface GP Ib expression correlated (r = 0.88 in either group) with the magnitude of hSIPA, in the two groups. The progressive removal of surface GP Ib was mainly attributed to redistribution of GP Ib from the membrane skeleton into the cytoskeleton. Our observations suggest that use of heparin-coated circuits partly blocks the reduction of hSIPA, as a result of a lesser degree of redistribution of GP Ib.


Sign in / Sign up

Export Citation Format

Share Document